16.marker.59-62

Resource Type: 
File
File Type: 
microsoft excel xlsx file
Download: 
Download File NameAvailable atSizeMD5
16.marker.59-62.xlsxCarrotOmics137.97KB16ddc39722d4f21f9988b9c03796b5b3
Description: 

Linkage map markers and information.

References: 
The following records refer to this file:
Genetic MapLoading content
Featuremap: 
NameDescriptionUnits

A Br1091 plant was crossed with a HM plant to generate the Br1091 × HM1 F2 population from a single F1 plant. A SFF plant was crossed to a second HM plant to generate the SFF × HM2 F2 population from a single F1 plant. HM1 and HM2 were siblings derived from a self-pollinated HM selection. A third HM plant was self-pollinated to generate the HM3 population. This population had undergone five generations of selfing before the final self-pollination to produce the population, and it was still segregating for resistance.

This linkage map is for the Br1091 × HM1 F2 population.

Linkage maps were constructed with JoinMap 3.0 software. Markers and genotypes with more than 10% missing data and markers that significantly deviated from expected segregation ratios using a Chi-square test (P < 0.01) were removed. For linkage groups with clusters of markers with significant segregation distortion (P < 0.0005), all markers were used to generate the linkage map. Linkage groups were obtained at a LOD threshold >3.0. The regression mapping algorithm was used with Haldane’s mapping function to calculate distances between markers. Haldane’s mapping function was chosen because it provided a more accurate marker placement according to the carrot physical map than the Kosambi’s mapping function. Each marker was coded twice, once for each parental phase. The linkage groups were properly phased by using marker scores for individuals related to the parents. The marker order was further examined using CheckMatrix (http://www.atgc.org/XLinkage, Truco et al. 2013) for inconsistencies, and markers with more than one inconsistent score were removed. To remove redundant markers in the Br1091 × HM1 population, a genetic bin map was developed. For each linkage group, pair-wise recombination values among all markers were calculated. Adjacent markers with zero recombination among them were assigned to the same genetic bin. In addition, adjacent markers with “false” recombination due to missing data were considered to belong to the same genetic bin. The marker with the least number of missing data points was chosen to represent each genetic bin. SNPs and SSRs with known chromosome locations were used to anchor the linkage groups. After being assigned to chromosomes, linkage groups were oriented and numbered following the chromosome orientation and classification of Iovene et al. (2011).

cM

A Br1091 plant was crossed with a HM plant to generate the Br1091 × HM1 F2 population from a single F1 plant. A SFF plant was crossed to a second HM plant to generate the SFF × HM2 F2 population from a single F1 plant. HM1 and HM2 were siblings derived from a self-pollinated HM selection. A third HM plant was self-pollinated to generate the HM3 population. This population had undergone five generations of selfing before the final self-pollination to produce the population, and it was still segregating for resistance.

This linkage map is for the HM3 population.

Linkage maps were constructed with JoinMap 3.0 software. Markers and genotypes with more than 10% missing data and markers that significantly deviated from expected segregation ratios using a Chi-square test (P < 0.01) were removed. For linkage groups with clusters of markers with significant segregation distortion (P < 0.0005), all markers were used to generate the linkage map. Linkage groups were obtained at a LOD threshold >3.0. The regression mapping algorithm was used with Haldane’s mapping function to calculate distances between markers. Haldane’s mapping function was chosen because it provided a more accurate marker placement according to the carrot physical map than the Kosambi’s mapping function. Each marker was coded twice, once for each parental phase. The linkage groups were properly phased by using marker scores for individuals related to the parents. The marker order was further examined using CheckMatrix (http://www.atgc.org/XLinkage, Truco et al. 2013) for inconsistencies, and markers with more than one inconsistent score were removed. To remove redundant markers in the Br1091 × HM1 population, a genetic bin map was developed. For each linkage group, pair-wise recombination values among all markers were calculated. Adjacent markers with zero recombination among them were assigned to the same genetic bin. In addition, adjacent markers with “false” recombination due to missing data were considered to belong to the same genetic bin. The marker with the least number of missing data points was chosen to represent each genetic bin. SNPs and SSRs with known chromosome locations were used to anchor the linkage groups. After being assigned to chromosomes, linkage groups were oriented and numbered following the chromosome orientation and classification of Iovene et al. (2011).

cM

This map is a merged consensus map of three linkage maps: (1) Br1091 × HM1, (2) SFF×HM2, and (3) HM3.

JoinMap version 3.0 was used to merge the maps. For each pair-wise comparison, common co-linear markers were identified as anchoring markers and used to develop the consensus map. QTL coordinates were transferred from the individual maps to the merged maps according to the location of the nearest flanking markers mapped in each specific linkage map.

cM

A Br1091 plant was crossed with a HM plant to generate the Br1091 × HM1 F2 population from a single F1 plant. A SFF plant was crossed to a second HM plant to generate the SFF × HM2 F2 population from a single F1 plant. HM1 and HM2 were siblings derived from a self-pollinated HM selection. A third HM plant was self-pollinated to generate the HM3 population. This population had undergone five generations of selfing before the final self-pollination to produce the population, and it was still segregating for resistance.

This linkage map is for the SFF × HM2 population.

Linkage maps were constructed with JoinMap 3.0 software. Markers and genotypes with more than 10% missing data and markers that significantly deviated from expected segregation ratios using a Chi-square test (P < 0.01) were removed. For linkage groups with clusters of markers with significant segregation distortion (P < 0.0005), all markers were used to generate the linkage map. Linkage groups were obtained at a LOD threshold >3.0. The regression mapping algorithm was used with Haldane’s mapping function to calculate distances between markers. Haldane’s mapping function was chosen because it provided a more accurate marker placement according to the carrot physical map than the Kosambi’s mapping function. Each marker was coded twice, once for each parental phase. The linkage groups were properly phased by using marker scores for individuals related to the parents. The marker order was further examined using CheckMatrix (http://www.atgc.org/XLinkage, Truco et al. 2013) for inconsistencies, and markers with more than one inconsistent score were removed. To remove redundant markers in the Br1091 × HM1 population, a genetic bin map was developed. For each linkage group, pair-wise recombination values among all markers were calculated. Adjacent markers with zero recombination among them were assigned to the same genetic bin. In addition, adjacent markers with “false” recombination due to missing data were considered to belong to the same genetic bin. The marker with the least number of missing data points was chosen to represent each genetic bin. SNPs and SSRs with known chromosome locations were used to anchor the linkage groups. After being assigned to chromosomes, linkage groups were oriented and numbered following the chromosome orientation and classification of Iovene et al. (2011).

cM
Loading content
License: 
NameAttribution 4.0 International (CC BY 4.0)
License Summary

You are free to:

  • Share: copy and redistribute the material in any medium or format

  • Adapt: remix, transform and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the following license terms:

  • Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

  • No additional restrictions You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits

Notices:

  • You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

  • No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Full Legal Texthttps://creativecommons.org/licenses/by/4.0/legalcode